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Abstract

We propose a semianalytical ion dynamics model for a coUisionless radio frequency biased

sheath. The model uses bulk plasma conditions and electrode boundary condition to

predict ion impact energy distribution and electrical properties of the sheath. The proposed

model accounts for ion inertia and ion current modulation at bias frequencies that are of

the same order of magnitude as the ion plasma frequency. A relaxation equation for ion

current oscillations is derived which is coupled with a damped potential equation in order

to model ion inertia effects. We find that inclusion of ion current modulation in the sheath

model shows marked improvements in the predictions of sheath electrical properties and

ion energy distribution function.
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I. INTRODUCTION

High density, low pressure plasma tools are widely used for etching of semiconductor

materials. 1 These tools usually employ a radio frequency (rf) biased electrode on which

the wafer is placed. This rf bias controls the impact energies of the ions arriving at the

wafer, which can be tuned to attain desirable etch rate and selectivity. The ions are

mostly produced by electron impact ionization in the center of the plasma. They are then

accelerated toward the substrate and the reactor chamber walls by strong, time-varying

electric field in the sub-millimeter scale sheath that is formed at the plasma boundary.

Thus, it is important to compute the acceleration of the ions as they traverse the non-

collisional sheath in order to predict ion energy distribution (IED) at the wafer. The

dynamics of the ions in the sheath is governed by the inertial and electrical forces. The

electrons, however, due to their low inertia and high thermalization are in equilibrium

with the instantaneous potential and follow a Boltzmann distribution at bias frequencies

of interest.

In the absence of a time-varying component of the potential, the ion kinetic energy

gain is simply balanced by the drop in the electrostatic potential in the sheath. However,

when the rf bias is applied at the electrode, the sheath electric field oscillates in time.

This makes a theoretical analysis more complex. Although, a numerical modeling of ion

dynamics is possible, it is a formidable task to self-consistently simulate it as a part of

a multidimensional reactor model. Hence, it is desirable to have a semianalytical model

that allows us to determine the ion impact energies at the wafer and electrical properties

of the sheath. This semianalytical model can then be used as a boundary condition in a

full reactor simulation. 2 The expressions for sheath electrical properties are also useful in

a plasma-circuit interaction models. 3

A theoretical analysis depends on simplifications based on the relative values of the

rf bias frequency, w, and the ion plasma frequency, wp_ (or the ratio j3 = w/wp,), which

determines how much the ions respond to the time variation of the sheath potential. If the

applied rf bias frequency at the electrode is much different from the ion plasma frequency
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the ion dynamics can be considerably simplified. In case of a small applied rf bias frequency

compared to the ion plasma frequency (/3 = w/wpi << 1), the ions have enough time to fully

adjust to the changes in the sheath potential. This is the equilibrium condition where the

ion density and velocity at a point in the sheath is only a function of the instantaneous

value of the local potential. At the other extreme, when the applied rf bias frequency is

much higher (/3 = w/wp, >> 1), the ions remain in a frozen condition as they are unable to

adjust to the rapid changes of potential. Under this condition the ion velocity and density

can be determined by the local, time averaged value of the potential. Analytical models

for the equilibrium and frozen conditions have been obtained by various researchers. 4-_

In this paper we will focus on the intermediate frequency range when the rf bias fre-

quency is of the same order of magnitude as the ion plasma frequency (8 "_ 1). In this

nonequilibrium regime, the ions only partially respond to the time variation of the sheath

electric field. This makes an analytical simplification of the ion fluid equations difficult.

Riley _'s proposed a unified sheath model for rf driven sheaths that is applicable for all

frequencies. In the intermediate frequencies, the ion inertia effects are modeled using a

damped potential, "_, which is obtained from a relaxation equation,

dff V -
-- = , (I)
dt T_

where r_ is the ion transit time through the sheath. It was assumed that the ions follow

the damped potential instead of the rapidly changing sheath potential, V. This equation

is derived by spatially integrating the ion momentum equation. T In order to simplify the

analysis and obtain a close form analytical expression for the electric field, the unified

sheath model assumes a constant ion current through the sheath at all time. This assump-

tion appears to be rather poor and simplifies the analysis at the cost of accuracy of the

model. In Ref. 9, we showed that ion current through a sheath can vary by as much as

70% and has significant effects on the predictions of the electric field, sheath capacitance,

IEDs, etc. We then derived a correction term in the expression for the electric field which

accounted for the spatio-temporal variation of ion current in the sheath. However, we used
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an empirical approach in the above work to determine the magnitude of the ion current

oscillations. This restricted the validity of the model to only cases when the sheath po-

tential varies sinusoidally. In this work, we improve this model and propose a modified

set of equations that does not depend on empirical expressions and is valid over a wide

range of potential and current conditions. We propose a relaxation equation for ion current

oscillations which must be integrated in time along with Eq (1).

The rest of this article is organized as follows. In Sec. II, we present the continuum

equations that govern ion transport in a non-collisional sheath and the relevant boundary

conditions. In Sec. III, we describe the details of the theoretical analysis and the model

formulation. In Sec IV, we discuss the results obtained and compare them with the unified

sheath model results. Both models are evaluated against the direct numerical solution of

the ion transport equations.

II. GOVERNING EQUATIONS

Ions in a non-collisional sheath can be assumed to be non-thermal with high directed

kinetic energy. This allows us to use the cold ion fluid equations.

On Onlg

0-5+ o---;-= o
Ou Ou e OV

= mOx

02V e (n
Ox 2 eo

(2)

n and ne are the ion and electron number densities, u is the ion velocity, and V is the

potential in the sheath, e and m are the unit charge and ion mass respectively. The

electrons are assumed to follow a Boltzmann distribution,

L

ne = no exp , (3)

where Te is the electron temperature written in volts and no is the electron (and ion)

density at the sheath-presheath edge, where a steady state condition is assumed. We
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further assume that the electric field at this boundary is small compared to the fields

in the sheath. This enables us to apply asymptotic boundary conditions as described by

Riemann and coworkers. 10,11 For a numerical solution of Eq. (2), the location of the sheath-

presheath boundary is immaterial as long as it is sufficiently far away from t]ae electron

front. The boundary condition at the sheath-presheath edge is based on quasineutrality

and Bohm criterion. Therefore, at x = -L (sheath-presheath boundary),

n=n,=no, u=uB=v---_-, and V--O (4)

where, uB is the ion sonic velocity. A reference potential is chosen at this boundary. Since

the ions attain supersonic velocity in the sheath, an extrapolation condition is used for n

and nu at the electrode boundary, x = 0. In order to close the system, another condition

is needed at the electrode boundary which is determined from circuit considerations.

III. SEMIANALYTICAL MODEL

A. Conservation Laws

A particle or ion current conservation law can be obtained by integrating the ion conti-

nuity equation [first equation in Eq. (2)]. It is evident that ion conduction current is not

necessarily constant in space and time.

0f-- e.d= = J, (5)
enu- enouB = Ot L

The above expression shows that the ion conduction current is dependent on the rate at

which the accumulated ion charge in the sheath changes in time. This is expected to

be limited by ion inertia. From F_,q. (5), we note that ion current has two components;

a constant ion current, enouB, entering the sheath from the plasma and a time varying

component, j_. Ji is an unknown and will be determined later.

The kinetic energy conservation of ions is obtained by integrating the ion momentum

equations and defining a damped potential, V.

5
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I 2 I 2
_rn_ = _-_uB - e_ (6)

The derivation of the above equation is given in Ref. 7. The assumptions made in order

to derive this equation are not affected when a time varying ion current is introduced in

the analysis. The ion velocity is now conveniently written as

The damped potential is determined by integrating Eq (1).

(7) L

B. Electric Field

The above conservation laws can be used to write the Poisson's equation in the following

form

= .... e_p (8)
_ enOUB

An expression for the electric field can be obtained by multiplying the Poisson's equation

by aV/Ox and integrating over the sheath length. This yields,

-r JE2 E2 =Ii+h+n°eTe exp -1 , (9)
2 2 eo

where Eo is the electric field at the sheath-presheath edge and/1 and Is are the following

integrals:

I1 en° _oV ( 2V'_-I/2= ---e 1 "_e / dV',

en° _oV "]' (1 2V'_-I/2dV'

(lo)

where V _ is a dummy variable in the above integral. We note that Eq (9) is the same

expression that is obtained by Riley _ with an additional correction term, Is. This term

accounts for the ion flux oscillations. As expected, /2 vanishes when the ion current is

assumed constant (i. e. ,], = 0).
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In order to evaluate the integrals, I1 and I2, certain simplifying assumptions regarding the

spatial variation of _7 and J_ are necessary. For 17 we adopt a linear relation, _7(x, t) =

a(t)V(x,t), as proposed by Riley. 7. c_(t) is a function of time. For J_, we assume the

following relation,

L (z, t) = "y(t)[V (x, t)] "(t) (11)

where "y is a constant of proportionality and r is an exponent to be determined later. These

quantities are only functions of time. The above relation is necessary in order to evaluate

/2, its validity, however, can only be justified by the improved performance of the proposed

model. The integrals, 11 and/2 can now be written as

en°(V)[(1- 2_--_)-_/2 1]I1 = -T-

_enov_ _' 2F1(1/2, 1 +r;2 + r; 2fr/T_)/2
e l+r

(12)

where 2F1 is a hypergeometric function which can be easily evaluated using a summation

term as described in Ref. 9. In order to determine the electric field from Eq. (9), the two

unknowns, Ji and r, must be evaluated.

C. Ion Current

In this section we derive a relaxation equation to determine the ion current oscillations.

We begin with the momentum equation for the ions which also can be written as

L

Onu Onu Ou e c_V
n (13)

-ff/-+_-_-x +nu_ = m 0x

On multiplying the above equation by unit charge and using the differential of Eq. (5), we

get

OJ, uOJ_ Ou e20V
--ff + _ + ent,_ = --_n-i__
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In order to obtain an ordinary differential equation in time, we express the spatial deriva-

tives of u and ,7_ in terms of the electric field. This is done using the derivatives of Eqs. (6)

and (11).

Ou e Of/ e fz OV
u-_z = m Oz m V Ox

oJ, . ,.-1or £ ov
0-7='Y"v _ =,.._

From Eqs. (14) and (15), we get the following relaxation equation for the ion current,

(15)

OJ_ [urJ_ (1_ ? _ ovot L--V-+ .]

We now identify that (u/V)cgV/Ox ,'_ 1/ri, where 7-i is the ion transit time through the

sheath. This allows us to simplify this equation further.

dJ_ = (r + g)Ji + genouB (17)
de v_

where,

e(V- rd) V- V (18)

g= ½m_2 =T.-2¢

The parameter g is the measure of ion nonequilibrium in the sheath and is the driving force

responsible for ion flux oscillations. When the ions instantaneously adjust to a relatively

slow potential variation (i. e. V _ V), g becomes small and ion current oscillations become

minimal. If g = 0 there is no driving force and the ion current oscillations decay. On

the other hand when the sheath potential changes rapidly, the high relaxation time, Ti,

prevents the ion flux to respond to the time scale. Thus, Eq. (17) satisfies the general

properties of ion current relaxation process in a non-collisional sheath.

D. Solution Technique

In order to close the system, we also need to determine the value of r. It is emphasized

that r changes over time, however, its exact dependence on time is unclear. After some
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numerical experimentation, we choose r = r0V_(t). This assumes that r is proportional to

the potential, V_, at the electrode over the rf cycle. The constant, to, will be determined

iteratively from the periodicity of J_, which can be written as

r/2,_/,_ __d']i dt = 0 (19)
J o dt

The following steps describe the iterative solution technique once no and Te are obtained

from the bulk plasma conditions.

R

Step 1. Assume initial values of J_, V, and to.

Step 2. Integrate Eqs. (1) and (17) using a time marching scheme to determine new values

of J_ and V. ro stays constant until the end of the rf cycle.

Step 3. Repeat Step 2 until the end of the cycle.

Step 4. Compute the new value of ro from Eq. (19). If the value of ro is converged, go to

the next step. Otherwise go to Step 2.

Step 5. Compute ion velocity and the IED from the values of J_, V, and r over the rf cycle.

It usually takes less than 25 cycles to obtain converged values of to. Figure 1 shows that the

convergence rate of r0 is slower at higher values of _. It is also found that the magnitude

of the applied potential or current at the electrode does not affect the convergence rate.

IV. RESULTS AND DISCUSSION

In this section we demonstrate that the proposed sheath model with ion flux correction

shows improvements in the prediction of the electric field and ion impact energy distribu-

tion (IED) at the electrode. We will make comparisons between the present model and

the unified sheath model. It must be noted that the unified sheath model is obtained by

simply setting/2 - 0 in Eq. (9). These models will also be validated against the numerical

solution of the ion fluid equations, which is considered exact in the current analysis.

We will consider two cases; potential control, where a time varying potential waveform

is applied as a boundary condition at the electrode, and current control, where a time

vm-ying current is passed through the sheath. The results will be analyzed for different

9
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values of the frequency ratio (_ = wlw_) at Te = 2.0eV with an ion molecular weight of

69 (CF +).

A. Potential Control

We apply a sinusoidal potential waveform at the electrode end of the sheath,

Vw ( t ) = Vac sin wt + V_ (20)

where Vale is the dc self bias which is determined by enforcing a net zero current over

one rf cycle. The potential is held at zero at the sheath-presheath boundary. A Vac of

100 V is chosen for all cases run in this section. In Fig. 2 we present the ion current

oscillation waveform obtained by the present model and the numerical model. A constant

ion current assumed in the unified sheath model is also plotted. The ion conduction current

is normalized by the ion current entering the sheath from the plasma. There is reasonable

agreement between the present model and the numerical solution. The agreement is better

at/3 = 0.1 and 0.25 than at higher values of_. The overall trends are well captured and

the remaining disagreement is attributed to the assumptions made in Eqs. (1) and (11).

A further refinement of Eq. (17), which is the subject of future study, could remove some

of the existing discrepancies at higher B.

Figure 3 shows the variation of the electric field over the rf cycle. It is evident that the

ion flux correction improves the prediction of the electric field values. The amplitude

of the oscillations obtained from the unified sheath model is around 25% smaller than

the numerical value at /3 - 0.1 and 0.25, while the present model consistently shows

improved predictions. At/3 = 1.0, all three predictions come closer due to a smaller ion

flux oscillation. At even higher values of/3 the correction term is expected to be minimal

and, hence, the use of the unified sheath model will be adequate.

Figure 4 shows the IED at the electrode obtained from the numerical and the semianalytical

models. It is important to determine the IEDs accurately since they play an important role

in the etching process. These distributions are obtained by sampling the ion kinetic energy

L
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over the rf cycle into discrete energy bins. The size of the energy bin determines the noise

that appears in the distribution. The ions acquire a bimodal kinetic energy distribution as

they travel through a time varying field before they reach the electrode. The two important

properties of this distribution are the relative peak heights and the energy gap between

the peaks. The energy gap is determined by the range over which the damped potential,

V, oscillates, which is predicted fairly accurately by both models. It can be seen in Fig. 4

that both the numerical solution and the present model predict a higher high energy peak,

while the unified sheath model predicts peaks of equal heights. The unequal peak heights

is caused by the ion flux oscillation which weighs in favor of the high kinetic energy ions.

During the rf cycle when the sheath potential is at its maximum, the flux of ions is also

high, and hence, more ions hit the electrode with high kinetic energies. The reverse is

true when the sheath potential drop is at its minimum. It is also interesting to note that

at/3 = 1.0, the peak heights are not as different as in the case of/3 -- 0.25. There are

two reasons for this. First the ion flux oscillation amplitude is not as high, and second,

the phase difference between the ion flux waveform and the potential waveform causes a

weaker constructive interference.

B. Current Control

In this case we pass a sinusoidal current through the sheath with no dc component,

L

J- Jac sin wt (21)

The sheath potential is obtained as a part of the solution from the following equation,

Ja¢ sin wt = enu + Je + eE

OE . (22)
= enu + Je + e-_ V

where Je is the electron conduction current. The values of the potential obtained also

strongly influences the IEDs. In Fig. 5 we show the sheath potential obtained for f_ = 0.25

with the current amplitudes, J_c 35 and 50A/m 2. It is evident that the unified sheath
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modelpredicts an exceptionally large valueof sheath potential drop than what is obtained

from the direct numerical solution of the ion fluid equations. On adding the effect of ion

flux oscillations, this unrealistically largepotential drop is minimized and the result agrees

well with the one obtained from the full numerical solution. This significant ch_.ngein the

potential drop is due to the changein sheathcapacitance. In the present model the sheath

is allowedto store time varying ion chargeunlike the unified sheath model where it is held

constantdue to a constant ion conduction current assumption. The electric field waveform

alsoshowssimilar trends. In Fig. 6 we note that the present model predicts values of the

electric field that agree with the numerical results extremely well.

Figure 7 shows the IEDs obtained from the two models and is compared with the direct

numerical solution results. First we note that in the current control case, the low energy

peak is higher than the high energy peak due to the fact that during the rf cycle the sheath

potential drop stays near it minimum for a longer time compared to at its maximum [see

Fig. 5]. Thus, cumulatively a lot of ions hit the electrode at low energies. Although

the ion flux oscillations favor the high energy peak, it is not enough to compensate for

the this effect. However, the ion flux oscillations does effect the relative peak heights

which is evident from a smaller difference in the peak heights in the present model versus

the unified sheath model. The major difference is, however, seen in the width of the

distribution. This is clearly an artifact of the large sheath potential drop predicted by the

unified sheath model, which results is a wider IED spectrum.

V. CONCLUDING REMARKS

We propose a semianalyticai ion dynamics model that accounts for ion current oscillations

at intermediate bias frequencies (8 "_ 1). A relaxation equation for ion current is obtained

which is integrated over the rf cycle along with the equation for the damped potential to

determine ion flux, kinetic energy, and sheath potential or current. A correction term is

also proposed for the electr!c field exPress!on. We see marked improvements in electric

field and IED predictions when we include the ion current oscillation effect: The biggest

improvement is found in the prediction of the sheath potential drop when a specified rf
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current is passedthrough the sheath. This is due to the change in the sheath capacitance

since, in this model, the accumulated ion charge is allowed to vary with time in the sheath.

The relative peak height and the width of the IED are also improved significantly.
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FIGURE LEGENDS

FIG. 1. Convergence of ro with rf cycle at different values of frequency ratios.

FIG. 2. Comparison of normalized ion current, enu/enouB, oscillations at VGc = I00V,

Te = 2.0eV, and _ = a) 0.1, b) 0.25, c) 0.5, and d) 1.0 A potential control boundary

condition is used.

FIG. 3. Comparison of electric field oscillations at Va¢ = 100V, Te = 2.0eV, and _ = a)

0.1, b) 0.25, c) 0.5, and d) 1.0. A potential control boundary condition is used.

L

FIG. 4. Ion energy distribution functions at Vac = 100V, Te = 2.0eV, and _ = a) 0.25 and

b) 1.0. A potential control boundary condition is used.

FIG. 5. Comparison of sheath potential at fl = 0.25, Te = 2.0eV, and Jac = a) 35 and b)

50 A/m 2. A current control condition is used.

FIG. 6. Comparison of electric field at _ = 0.25, Te = 2.0eV, and J_c = a) 35 and b) 50

A/m 2. A current control condition is used.

FIG. 7. Ion energy distribution at _ = 0.25, Te = 2.0eV, and Jac = a) 35 and b) 50 A/m I.

A current control condition is used.
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